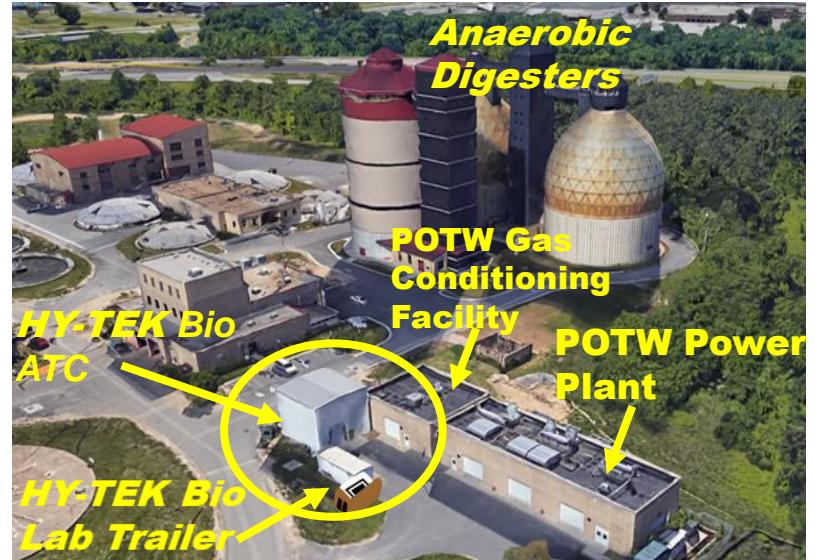

*Advanced LED-lit Photobioreactors Deliver CCU
While Maximizing Returns*

Ed Weinberg, P.E., ESSRE Consulting

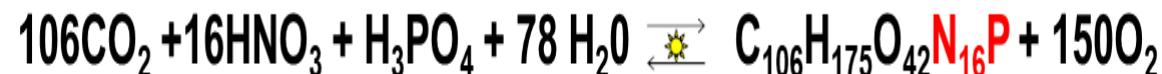
This presentation contains confidential information regarding HY-TEK Bio LLC's proprietary technologies. By accepting this presentation the recipient agrees that it will cause its directors, officers, employees and representatives to use the presentation and such information only to evaluate a specific transaction with Biogas Owner Operator and HY-TEK Bio LLC, and for no other purpose. HY-TEK Bio © 2009 - 2025

Presentation Outline



This presentation contains confidential information regarding HY-TEK Bio LLC's proprietary technologies. By accepting this presentation the recipient agrees that it will cause its directors, officers, employees and representatives to use the presentation and such information only to evaluate a specific transaction with Landfill Owner Operator and HY-TEK Bio LLC, and for no other purpose, HY-TEK Bio © 2009 - 2025

Who Are We? ESSRE Consulting & HY-TEK Bio, LLC.


Role: Technology Solution Providers - Resource Recovery of Waste C and Nutrients

- Privately held – Headquartered in Sparrows Pt., Maryland near Baltimore; Algae Test Center located at Baltimore's Back River Waste Water Treatment Plant
- Technology and Project Developers of Microalgal Integrated Biorefinery Systems designed for concurrent CDR and CCU
- Mitigates up to 5% of a 3 MW Power Plant that combusts Anaerobic Digester Biogas since July 2013
- CO₂ and NO_x removal efficiencies of 100% respectively, from 10L, 500L and 6800L Photobioreactors
- Conversion commercialization pursuits focus on DHA/EPA, Carotenoids, Biofuels or Biochar

WRRF CO₂ Capture and Reuse Project C, N & P, O₂

Mass Cultivation of Microalgae in Photobioreactors – Net Negative C Operations

Technology Overview FIVE KEY COMPONENTS TO Carbon Recovery/Reuse & GHG Mitigation

1. **ALGAE** – A unique strain of algae indigenous to the Chesapeake Bay that rapidly consumes NOx, CO₂ GHGs and other emissions; *thrives at up to 100% CO₂ levels*; and, is high in lipid oil and other marketable products
2. **CONTAINMENT** – 20' tall, bubble column photobioreactors in lieu of ponds, raceways
3. **LIGHTING** – Employs a patent-pending high intensity LED Grow Light System that optimizes wave spectra, photointensity, photoperiod with a “flash effect” that enhances photosynthesis to maximize algal system yield
4. **GAS INJECTION** – A patent-pending gas injection system that assures rapid CO₂ dissolution in one tall cultivation vessel for enhanced algal growth
5. **NUTRIENT** – Uses a patent-pending process that converts animal manure or other biomass into a concentrated nutrient solution for cost-saving maximum growth and density of the algal strain.

DOE and State Funded Technology Advances – 2017 thru Present

- A breakthrough technology that can mitigate **100% of CO₂, NOx and provide Carbon Capture & Utilization (CCU)**.
- A CCU solution for any source of CO₂ (landfill, WWTP, power plant or other carbon emitter).
- **“Natural” NOx mitigation for profit without the use of chemicals or catalysts**
- An innovative **LED Grow Light System** which increases algal growth, reduces heat and power consumption and increases the carotenoid content.
- **Modular/scalable design speeds implementation and works with any generating capacity - from small landfills to large power plants.**
- Over 12,000 hours of operating experience backed by credible third party validation.
- **CCU: Produces algae, commodity oxygen and high-value bioproducts which generates significant revenue sharing opportunities.**

Algal System Technology/Flue Gas Conditioning

FLUE GAS

FLUE GAS
FILTRATION

Flue gas is captured using a slipstream and cooled using Waste Heat Recovery Units (not shown)

Simple condensate trap cools gas & water to 85F and traps any particulates

FLUE GAS COMPRESSION

Page 7

Flue gas is fed to a Liquid Ring Pump to minimize heat of compression. The water is separated from the compressed flue gas which is then directed to the photobioreactors (PBRs)

WATER
CONDITIONING

Liquid Ring Pump recirculating water is neutralized to pH 7 SU and cooled to <70F for re-use as the compressor seal and PBR makeup water with nutrients added

Microalgae Cultivation Technology/Process

FLUE GAS
INJECTION

A special gas sparger was developed in-house to ensure rapid transfer of gas chemistry to the culture using micro- bubbles that increase light penetration and enhance tall column mixing throughout

GROWTH
ENHANCEMENT

Advanced LED lighting technology developed in-house to enhance growth and nutritional value of the algae via proprietary lighting strategies that “photo-stress” the algae and reduce energy consumption

CULTURE
HARVEST

CULTURE
HOLDING

When the algae gets too dense for light penetration, the automation drains 10% of the tank to thin out the culture to get more light

Harvested algae is centrifuged (not shown) to concentrate the algae into paste product for conversion. Centrate is recirculated to the PBRs.

Why Algae? - Host of Bioproducts

- Algae and algae oil is used in the following products (partial list)

- ✓ **Nutraceutical products, eye nutrients, Omega-3 Fatty Acids, DHA-EPA**
- ✓ Skin conditioners
- ✓ Cosmetic and paint thickeners
- ✓ Bioplastics A green recycling symbol with the word 'PLASTIC' written in a circle above it.
- ✓ Animal and human food supplements - **PROTEINS**
- ✓ The HY-TEK Bio algae *s.HTB-1* can bring > **\$16/lb** net value market pricing
- ✓ 90-95% **Oxygen** from photosynthesis is a reusable marketable commodity
- ✓ Direct replacement for Palm Oil A small, stylized icon of a palm tree with a brown trunk and green fronds.
- ✓ **Biochar Soil Amendment**

Carbon Reuse via Microalgae

Biofuels

- Biodiesel, Renewable Diesel, and SAF

Bioproducts

- Carotenoids –> *Pigments, Nutraceuticals*
- Proteins
- Sugars/Starches
- *Soil amendment/fertilizer - Biochar*

Commercial Project Overview: Landfill Energy Project Site

- **Active or Closed Landfill**
- **Active Gas Collection System**
- **CHP or RNG**
- **400 scfm = 8 Photobioreactors**
- **Containerized Modular Microalgal Biorefinery System**

Other Beachhead Targets:

- **WWTP Anaerobic Digester Biogas Utilization**
- **Farm Manure Digesters**

Algae Performance and Production/Financial Metrics

■ Growth & Harvesting – *sHTB1*

- Specific Growth = <1 day
- Culture Density = 5 g/L
- 75 lbs/day/bioreactor
- Oil Lipid Content = 35%
- Areal Utilization = 40 g/m²/day (DOE min. threshold 20 g/m²/day)

■ Production & Financial Projections (10, yrs., 8 Photobioreactors)

- 600 lb. Algae per day
- Daily Algae Revenue = 600 * \$16/lb = \$9600/day
- Annual Revenue = average \$2.67M
- Initial Capital Investment = approx. \$3.6M
- Simple Payback Period = < 3 years and Annual ROI = >50% at breakeven pt.
- IRR = >28%

■ Algae Revenue Drives the Profit Engine for Owner/Operators & Technology Providers

■ Multitude of Product Markets – Highest Valued is Lutein, \$1000/kg

Algal-Economics

✓ Net Market Value per Ton

- ✓ \$16/lb Microalgae = \$32,000/Ton
- \$0.50/lb Gasoline = \$1000/Ton (@\$3.07/gallon)
- ✓ \$450/lb Lutein = \$900,000/Ton
- \$0.46/lb Renewable Diesel = \$920/Ton @3.73/gallon
- \$80/MT Carbon Credit = \$72.20/Ton

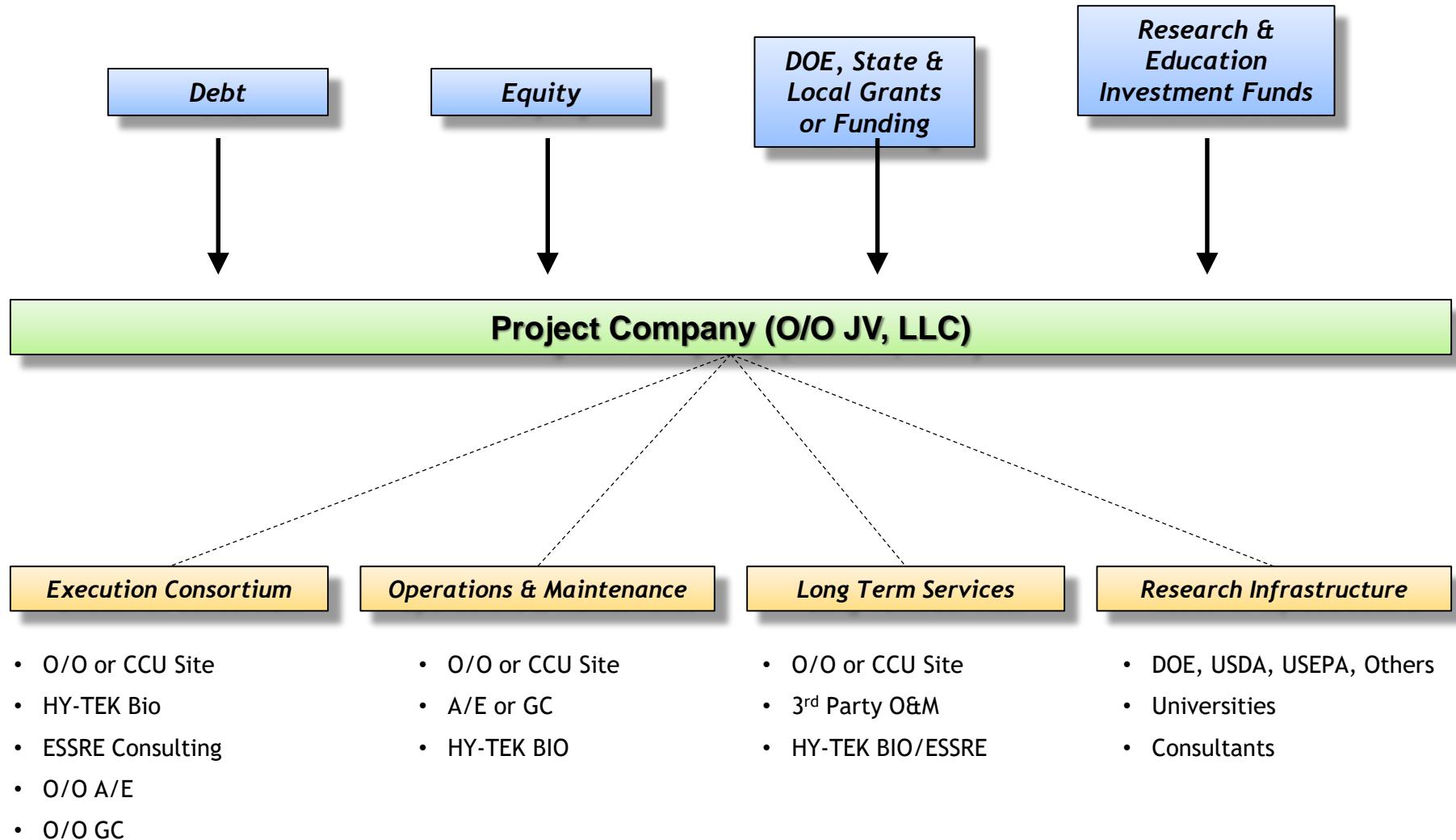
Commercialization Setbacks

- Covid-19 Pandemic
- PBR Vessel Rupture

Business Model Revenue Sharing Components

✓ **Land (Space) Annual Rental Fee**

- At or Above Fair Market Rates


✓ **Microalgae Biorefinery Facility Electric Bill**

- Parasitic load paid back at premium above established PPA rate

✓ **Project Credits, O & M Credits**

- Carbon credits, job creation credits go back to site Owner/Host
- If O/O takes on O&M creates new jobs and avoids cost of 3rd party O&M profit margins

Commercial Demonstration Project: Structure Overview

Microalgae Benefits

■ Air Quality Improvement

- Priority air pollutant NO_x to Non-Detect and CO₂ GHG emissions reduction
- Reduce O/O carbon footprint and carbon footprint

■ High Purity O₂ Gas Production

- Commodity Gas - additional sales revenue
- Replace combustion air for reduced air emissions and improved heat rates

■ Concurrent CDR and CCU

- *sHTB1* thrives in high CO₂ gas streams – sequester <100% CO₂ to grow algae for profit
- Biogas to RNG pipeline quality provides separated CO₂ to grow algae for profit

CCU, NO_x & GHG Mitigation via Microalgae is Independent of Utilities Operations

Algae Facility Installation and Operations Are Paid for by Algae Revenue


Excess maintenance (and costs) for engines to comply with NO_x emissions eliminated

Job Creation

Review Points

Digesters/Landfills
Biogas Engine Exhaust
LFG Engine Exhaust
RNG Waste CO₂ Tail
Gas

Lutein

Recycled N &P from
Manure,
Wastewater,
Digestate or
Landfill

Key Takeaways and Action Plans

- ✓ Concurrent CDR and Carbon Capture & Utilization (CCU) via a commercial scale Microalgal Integrated Biorefinery
- ✓ Our clean energy solution is break-through technology, has the potential to eliminate 100% of the CO₂ (GHG) emissions & NOx emissions from flue gas exhaust it processes while generating high market value algae end products.
- ✓ Beachhead target is CO₂ content of biogas or landfill gas regardless of utilization: CHP (engine exhaust) or RNG (waste tail gas from purified biogas/LFG. CO₂ concentration range from 3% to 98%
- ✓ Non-potable water sourcing
- ✓ Provides O/O opportunities for new revenue streams driven by Lutein
- ✓ Provides design that is modular and flexible as flue gas varies over project life
- ✓ Seeking an Alpha Commercial Demonstration, 4 or more Photobioreactors (200 scfm flue gas)

GHG Calculator I Algae

- Almost half of the algae by weight is C, hence,
 - 1 Ton of Algae “FIXES” 1.83 Tons of CO₂
- 100 PBRs will mitigate 1238 Metric Tons of CO₂ annually
 - \$99,000 pa @ \$80/MT CO₂ carbon credits
- The CO₂ emissions reduction from 10 Algae Facilities is equivalent to:
 - 15 acres of trees planted
 - 520 cars removed from the road
 - 795 tons of synthetic N fertilizer (as A-NH3)*
 - 6,008 tons of synthetic P fertilizer (as TSP)*

* Blonk Consultants Report, GHG Emissions of N, P and K Fertilizer Production A. Kool, M. Marinussen, and H. Blonk , November, 2012

GHG Calculator II AD Biogas & LEDs

- Data from American Biogas Council 2025 Conference
 - The U.S. biogas market is a **\$37.6** billion industry
 - **1,180** water resource recovery facilities use anaerobic digesters
 - **609** anaerobic digesters on farms
 - **583** landfill gas capture projects
 - **113** stand-alone food waste biogas systems
- GHG emissions reductions from Horticulture LEDs*
 - If all indoor horticultural lighting were converted to conventional horticultural LED, annual lighting consumption would be reduced by **34%**:
 - **9,591** GWh to **6,307** GWh pa and applying our GROW Light systems would reduce this potentially another 80% to **1261** GWh
 - Total potential savings, **8330** GWh which represents ca. **3.07 MMT CO₂eq pa (2020)**
 - In comparison, Agreena, European carbon credit startup is working with more than **2,000** farmers and hopes to issue **1 million credits** pa for 1st 2 years

* US DOE Report - Energy Savings Potential of SSL in Agricultural Applications (2020)

Questions? Discussion

1. DOE Myth Busters: a) LED lights too expensive vs. natural sunlight
b) Commodity Biofuels & Bioproducts vs. Niche Products
2. Algae Feed/Food or Fuel? 3. Gigatons vs. Megatons – CO₂ Reduction (CDR)
4. Transfer LED lighting strategies to CEA grown leafy greens for Lutein

